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This paper presents some simple analytical and numerical models which describe
the dynamics of gas flowing from a multilayered low-permeability porous rock into
a fracture. The models account for the vertical flow between relatively high- and
low-permeability layers. The motion of gas in a permeable rock is governed by a
nonlinear diffusion equation for the gas pressure. We analyse the gas flow described
by this equation in both bounded and unbounded domains. In both cases simple
scalings laws are developed to determine the fluxes and the dimensions of the regions
within the rock which may be depleted over a given time scale. These are compared
with the results of a full numerical model.

1. Introduction
Much work has been carried out to quantify liquid and gas flow through permeable

strata (e.g. Bear 1972; Dagan 1989) owing to their great industrial and environmental
importance. Although a complete description of such flows often involves complex,
multiphase flow relations which require numerical solution, there is considerable value
in developing approximate models which admit simplified or approximate analytic
solutions (Barenblatt 1996). The present work is concerned with developing some
approximate analytic and numerical models to describe the extraction of gas from a
porous medium composed of two layers of different thickness and permeability. This
problem is of growing interest to the natural-gas industry owing to the progressive
depletion of gas reservoirs and the extraction of gas from increasingly impermeable
layers. In many such reservoirs of low-permeability rock, the rock near the well may
hydraulically fractured during drilling. The objective of generating such fractures is
to enhance the flow by providing a large surface to which the gas can drain from the
reservoir; it then flows along the relatively high-permeability fracture and into the
well (figure 1).

The pressure-driven isothermal flow of gas, with equation of state P = ρRT , relating
pressure P , density ρ, gas constant R and temperature T , and with viscosity µ that
does not depend on pressure, in a porous layer of permeability k and porosity φ is
governed by the relation

Pt =
k

φµ
∇(P ∇P ) (1.1)

Equation (1.1) was first derived by Leibenzon (1929) and later by Muskat & Botset
(1931). The detailed formulation of the isothermal gas filtration problem can be found
in Barenblatt, Entov & Ryzhik (1990).

We analyse the flow described by this equation in bounded and unbounded domains
consisting of two layers of different permeability. In both cases we present simple
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Figure 1. (a) A vertical well with an engineered hydraulic fracture.
(b) Quasi-one-dimensional draining of gas into the fracture.

scaling laws for determining the fluxes and the dimensions of the regions within the
domain which may be depleted over a given time scale.

2. One-layer considerations
Let us concentrate first on the decompression-driven flow of gas from a thin

laterally extensive reservoir into a planar vertical fracture. In this case, the flow is
essentially one-dimensional, varying with the normal distance x from the fracture
(figure 1), and so described by the equation

Pt =
k

φµ
(PPx)x. (2.1)

We consider a reservoir having lateral extent L from the reservoir and initial gas
pressure Pmax = P (L, 0) at the far end x = L. It is useful to introduce the effective
diffusion coefficient α = k(Pmax)/φµ, and the cross-reservoir diffusion time tD =L2/α.
In order to non-dimensionalize the space and time quantities we consider href and
αref, say the thickness and diffusivity of a reference layer, and we scale α′ =α/αref,
x ′ = x/href, L′ = L/href, t ′

D = tD/tDref, and t ′ = t/tDref where tDref = h2
ref/αref. We also

introduce the dimensionless pressure p(x ′, t ′) = P (x, t)/Pmax. The mass flux per unit
area of the fracture

Q(t) =
k

µ
ρ(0, t)Px(0, t) (2.2)

can be scaled as q(t ′) = Q(t)/Qref, where Qref = φPmax/hrefRgT .
For convenience, we drop the primes for the remainder of this section. Then

equation (2.1) may be expressed as

pt = α (ppx)x (2.3)

and the flux (2.2) becomes

q(t) = αp(0, t)px(0, t). (2.4)

The first exact solutions for the nonlinear equation (2.3) were presented by Boussinesq
(1904) and a review of these can be found in Bear (1972). Boussinesq has shown that
equation (2.3) with the set of initial and boundary conditions

p(x, 0) = pinit (x), (2.5)

p(0, t) = 0, ∂p/∂x|x=L = 0, (2.6)
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has the separable solution

p(x, t) = f (t)g(x), (2.7)

where f (t) given by

f (t) =
f (0)

1 + cf (0)α/L2
; c = 3a2/2, a =

∫ 1

0

τ dτ√
1 − τ 3

= 1
3
B(1/2, 2/3) ≈ 0.862, (2.8)

and g(x) is given by

x =
L

a

∫ g(x)

0

τdτ√
1 − τ 3

; x � L, g(x) � 1, g(1) = 1. (2.9)

Using that limx→0 g(x)g(x) = a, the mass flux (2.4) can be rewritten for the separable
solution (2.7) as

qsep(t) = aα

[
f (0)

1 + cf (0)(α/L2)t

]2

. (2.10)

A second Boussinesq solution of (2.3) can be obtained (Bear 1972) by introducing the
variable η = x/2(αt)1/2 and assuming an unbounded domain (L → ∞) and the initial
condition

p(x, 0) = 1. (2.11)

In this case the problem admits a similarity solution p(η) where p(∞) = 1, p(0) = p0

and

pp′′ + (p′)2 + 2ηp′ = 0, for η � 0. (2.12)

The mass flux can be then expressed in terms of the similarity solution p(η) as

qsim(t) = ã

(
α

t

)1/2

, (2.13)

where ã = 1
2
p(0)p′(0), for p(0) > 0. In the special case when p(0) = 0, then ã =

1
2
limη→0 p(η)p′(η) ≈ 0.33.
It should be noted that the similarity solution p(η) applies to an unbounded domain

(0, ∞). In practice, the domain is bounded, i.e. (0, L). In this situation, the large-time
asymptotic behaviour of p(x, t) is towards the separable solution (2.7) (Aronson &
Peletier 1981). However, at early times t � tD , i.e. before the pressure signal has
reached the far boundary of the reservoir, it is reasonable to approximate the domain
as unbounded. Figure 2(a) presents several numerical pressure profiles pnum obtained
by solving numerically the partial differential equation (2.3) in the domain (0, 1)
with the boundary conditions p(0, t) = 0 and px(1, t) = 0 and the initial condition
(2.11). The diffusion coefficient was taken as α = 1; hence the diffusion time tD = 1. It
can be seen from figure 2(a) that the numerical pressure profiles pnum are very well
approximated by the similarity solution profiles psim for 0 < t < 0.15tD . However, after
this initial period, the numerical solution is very well approximated by the separable
solution psep with cf (0) 	 1.2696. Figure 2(b) presents the evolution in time of the
error norms defined as

‖pnum − psim‖2
2

/
‖pnum‖2

2

and

‖pnum − psep‖2
2

/
‖pnum‖2

2, where ‖p‖2
2 =

∫ L

0

|p(x)|2 dx.
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Figure 2. (a) Numerical pressure profiles pnum ( ) compared with the similarity solution
profiles psim (� � �) and the separable solution profiles psep (� � �) for the test example

from § 2.1. (b) The evolution of the normalized error norms (i) ‖pnum − psep‖2
2/‖pnum‖2

2 and

(ii) ‖pnum − psim‖2
2/‖pnum‖2

2.

It can be seen from figure 2 that there is a swift switch between the similarity solution
and the separable solution at t 	 0.15tD . At this time, the pressure at the far boundary
of the reservoir has value p(1, t) 	 0.94. The observed value of cf (0) means that
f (0) 	 1.138 so that the initial condition p(x, 0) = 1 is equivalent to a virtual initial
condition of separable shape pinit = f (0)g(x), with p(L, 0) = 1.138.

3. Analogue Hele-Shaw draining experiments
Leibenzon (1929) discovered that the isothermal gas filtration equation (1.1) is

similar to the equation obtained by Boussinesq (1904) for the distribution of the
hydraulic head in gently sloping unconfined groundwater flow, namely

ht =
gkρ

φµ

∂

∂x

(
h

∂h

∂x

)
. (3.1)

Furthermore, these similar flows have been simulated using Hele-Shaw analogue
experiments, see e.g. Shestakov (1956) and Barenblatt et al. (1990) for more details.

To test the theoretical predictions of the flux, we have carried out a series of draining
experiments using a vertical Hele-Shaw cell 15 cm high, L =27 cm long and with a
gap width of d = 3 mm (cf. King & Woods 2003). The cell was placed on a horizontal
surface, and a layer of golden syrup, h0 = 9 cm deep, filled the length of the cell.

At the start of the experiment, a gate at one end of the cell was removed so that
syrup could then drain freely from the end of the cell. The syrup was collected in a
vessel placed on a digital mass balance to record the mass that issued from the cell,
M(t), as a function of time. Figure 3 shows a typical data set M(t) as a function of
time t from an experiment. The separable solutions presented above suggest that for
time t > 0.15tD the draining flux should vary according to the form

dM

dt
= a

M0

tD

(
f (0)tD

tD + cf (0)t

)2

, (3.2)
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Figure 3. Experimental results: the mass of the syrup issuing from the cell M(t) in grams
(× × ×) compared with the separable prediction ( ), and the quantity t/M(t) (+ + +)
plotted as a function of time.

where M0 is the initial mass of syrup in the cell and all the quantities are now
dimensional. We have plotted the data in the form t/M(t) as a function of time since
the separable prediction for the collected mass,

M(t) = M0

(
1 − f (0)tD

tD + cf (0)t

a

c

)
, (3.3)

suggests that at long time, t � 0.15tD , the quantity t/M(t) should asymptote to
a line of slope 1/M0 and intercept tD/cf (0)M0. As seen in figure 3, the data
are in excellent accord with this prediction. The slope of the asymptote indicates
a mass M0 = 102 g which when correlated with the intercept gives the diffusion
time tD = 2330 s. These results are consistent with the predictions M0 = ρLh0d and
tD = L2µ/ρgkh0, respectively, with syrup of viscosity 30 Pa s and density 1410 kg m−3,
and a cell of permeability k = d2/12.

4. Two layers
4.1. Unbounded domain

We now extend the model to include two or more layers of different permeability. In
this situation, the gas tends to diffuse more rapidly along high-permeability layers and
it also drains from the low-permeability layers into the adjacent high-permeability
layers. For simplicity, let us initially consider the case of two layers with permeabilities
k1 and k2 and respective widths h1 and h2 (cf. figure 1). We assume that k2 <k1, so that
the first layer tends to decompress more rapidly than the second and the inter-layer
gas flow involves gas diffusing from the low-permeability second layer into the high-
permeability first layer. We non-dimensionalize the quantities of interest, as done in
§ 2, with the particular choice of the first layer as the reference layer, i.e. we take href =
h1 and αref = α1. Therefore we have h′

1 = 1, α′
1 = 1, and h′

2 = H , α′
2 =K , where we

denote the layer thickness and permeability ratios by H = h2/h1 and K = k2/k1. For
convenience, we again drop the primes for the remainder of this section.
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At early stages when diffusion across the low-permeability layer is negligible,
t � H 2/K , the total flux can be approximated using (2.13) as

qE 	 ã

[(
1

t

)1/2

+ H

(
K

t

)1/2
]

. (4.1)

Thus the ratio of the fluxes from layer 1 and from layer 2 into the well is approximated
by

qE2

qE1

	 H
√

K. (4.2)

At later stages, after the diffusion across the low-permeability layer becomes effective,
t � H 2/K , it can be assumed that the pressure across the two layers gradually equili-
brates and therefore the ratio of fluxes from layer 1 and from layer 2 at late times
into the well is approximated by

qL2

qL1

	 HK. (4.3)

Since the fluxes again scale as t−1/2, we can write qL1 = qE1/β and the late-time total
flux into the well is approximated by

qL 	 ã

β
(1 + KH )

(
1

t

)1/2

, (4.4)

where, after the pressure equilibration, the lateral extent of rock which has
decompressed scales as LD ∼ βt1/2. The parameter β can now be determined from the
asymptotic form of the mass conservation principle:

φ

∫ L(t)

0

ρ dx =

∫ t

0

q dt, with t � H 2/K (4.5)

leading to the relation

β2 =
1 + KH

1 + H
(4.6)

and the late-time flux

qL 	 ã(1 + KH )1/2(1 + H )1/2t−1/2. (4.7)

In order to illustrate the above scaling laws, we have considered a test problem
based on a model with two layers, of thickness and diffusivities ratios H = 2.5
and K = 0.04, respectively. We also considered p(0, t) = 0.5. Then from (4.2) the
flux ratio qE1/qE2

∼= 2 for t � H 2/K and from (4.3) the flux ratio qL1/qL2
∼= 10 for

t � H 2/K . The actual values of the early and late flux can also be calculated using
relations (4.1) and (4.7), respectively. The transition of the flux from the early to
the late values can be illustrated by the numerical solution of the two-dimensional
nonlinear diffusion equation (1.1). We have employed a finite-difference procedure
which consists of operator splitting and using a generalization of the Crank–Nicolson
method for nonlinear diffusion in each space dimension (Press et al. 1992). A constant-
pressure boundary condition was imposed on the well side of the domain while on the
remaining sides we have imposed no-flow conditions. The infinite horizontal geometry
was dealt with by taking the length L of the domain large enough for the time taken
for the averaged pressure at x = L/2 by to decrease 2 % to be larger than any other
time of interest.
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Figure 4. The numerical individual-layer and total fluxes ( ) compared with the calculated
values for the early individual-layer fluxes (− −) and the late total flux (− · −·) for H = 2.5,
K = 0.04 and p(0) = 0.5. All fluxes are scaled with

√
t .

Figure 4 shows the numerical prediction for the fluxes for the two layers and the
numerical prediction of the total flux, compared with the values calculated using
(2.13) for both layers and the value of the late flux calculated using (4.7).

It can be seen in figure 4 that at early stages, as expected, the flux coming from each
layer is approximated very well by considering them as independent and using the
methodology from the previous section. However, at longer times, since the gas tends
to diffuse faster from the high-permeability layer, a pressure gradient is created across
the two layers which drives an influx of gas from the low-permeability layer into the
high-permeability one. Consequently, the flux issuing from the high-permeability layer
is higher than in the case when the layers are independent, e.g. when a seal is present
between them. Also, the flux from the low-permeability layer is lower than in the
case of independent layers, but the overall effect on the total flux is still an increase
because the gas from the low-permeability layer effectively short-circuits the reservoir
by flowing into the high-permeability layer. This increase of the total flux relative
to the case of two independent layers continues until the pressure equilibration is
achieved across the two layers. It can be seen from figure 4 that at this later stage the
total flux is very well approximated by relation (4.7).

In order to understand the relation between the time needed for the pressure to equi-
librate across the two layers and the parameters of the reservoir we have numerically
investigated a few more test problems. The results from these investigations are
illustrated in figure 5.

In the first instance, we have taken three different values for permeability ratio K ∈
{1/10, 1/25, 1/90} and six values for the thickness ratio H ∈ {1/4, 1/2, 3/4, 1, 2, 3}. In
each case we have calculated the time when scaled total flux qT

√
t is maximum, which

is just before the equilibration is reached, and plotted them against the diffusion time
across the lower-permeability layer. The results displayed in figure 5(a) suggest that the
equilibration time scales as tmax ∼ H 2/K . This scaling law was then tested in a second
set of numerical tests for a more extensive range of parameters K ∈ {0.1, 0.01, 0.001}
and H ∈ {1, 10, 100}. Figure 5(b) shows the numerical fluxes, which are scaled with
the corresponding early flux qE in each case, against the scaled time tK/H 2. These
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t reaches maximum for H ∈ {1/4, 1/2, 3/4, 1, 2, 3}, K = 1/10 (�),
K = 1/40 (�) and K = 1/90 (�). (b) The numerical total fluxes for test problems with H =100
( ), H = 10 (− − −), H =1 (− · −·) and K = 0.001 (top), K = 0.01 (middle), K = 0.1
(bottom). In all cases the fluxes are scaled with the corresponding early flux qE , and the time
is scaled with H 2/K .

results show that tmaxK/H 2 	 0.9. Therefore, the equilibration time scales with the
diffusion time across the lower-permeability layer.

Using (4.1) and (4.7) the ratio of the late-time versus early-time flux is given by

qL

qE

	 (1 + KH )1/2(1 + H )1/2

1 + K1/2H
. (4.8)

The flux ratio (4.8) is in fact a measure of the advantages of the inter-layer gas flow
in the coupled model compared with the gas flow in an independent-layer model.
Figure 6 shows the values of the ratio (4.8) for several values of the permeability
ratios K and a window of ratios of layer thicknesses H . It can be seen in figure 6 that,
as expected, a very thin low-permeability layer, i.e. H � 1, has a negligible impact on
the coupled flux, because the low-permeability layer contains only a limited mass of
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Figure 6. The flux ratio qL/qE for several values of the permeability ratios K and a window
of ratios of layer thicknesses H . The theoretically calculated values ( ) are compared to
numerical results (�).

gas. As H increases, there is a sizeable increase of the flux ratio, owing to a major
flow of gas from the low- to the high-permeability layer. The maximum effect occurs
when the thicknesses ratio H =1/

√
K . The value of this maximum is

qL

qE

(H = 1/
√

K) =
1

2

√
2 +

√
K + 1/

√
K. (4.9)

Thus for K � 1 the maximum flux ratio can be approximated as qL/qE 	 0.5K−1/4

and the importance of the inter-layer gas flow becomes greater as the contrast between
the permeabilities of the two layers increases. The importance of this inter-layer flux
also increases with thickness ratio H up to a critical value of the low-permeability
layer. However if the low-permeability layer is very thick compared to the high-
permeability layer, such that H � 1/

√
K , then the impact of the coupling is again of

reduced importance. In this limit high-permeability streaks do not greatly increase
the flow, as most of the gas in the low-permeability layer continues to flow through
the low-permeability layer.

4.2. Bounded domain

We consider now two layers having length L, thicknesses h1 and h2, permeabilities
k1 and k2 and corresponding diffusion coefficients α1 and α2, respectively. As in
the unbounded-domain case, we non-dimensionalize all the quantities of interest,
including now the length L, with the choice of the first layer as the reference layer.
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4.2.1. Pressure equilibration between the layers

If we assume that the pressure equilibration between the layers is achieved before
the end effects become significant, then from the same considerations as in § 2.1, the
late-time flux in the limit case when P0 = P (0, t) = 0 is approximated by

qequil = a(1 + KH )

[
f (0)

1 + cf (0)(α/L2)t

]2

(4.10)

where α = β2 = (1 + KH )/(1 + H ).
We have seen in § 4.1 that the time needed for pressure equilibration between the

layers is related to the time at which the scaled total flux qT

√
t is maximum. This time

tmax scales with the diffusion time across the lower-permeability layer and in § 4.1 we
found tmax 	 0.9H 2/K . On the other hand, the end effects become important when the
pressure signal has reached the far end of the reservoir. A lower bound for this time
is given by the diffusion time along the reservoir through the high-permeability layer
1, tD1 ∼ L2. Thus relation (4.10) should be a good approximation for the late-time flux
if tD1 > tmax. This inequality may be recast as

K
L2

H 2
> cequil, (4.11)

where the value of the constant cequil is determined by the scaling factors in the relations
for tmax and tD1. With the relations found in § 2 and § 4.1, namely tD1 	 0.15L2 and
tmax 	 0.9H 2/K , we have cequil 	 6.

It should be noted however that the pressure signal along the high-permeability
layer is delayed by the gas issuing into this layer from the low-permeability one.
Therefore condition (4.11) is likely to be too restrictive, especially in the case of a
high-permeability streak (H � 1). If pressure equilibration between the layers takes
place, it implies that the flux from the low-permeability layer from into the high-
permeability one is greater than the maximum flux of the high-permeability layer into
the well. As these two fluxes scale with KL/H and 1/L, respectively, the equilibration
condition can be written as

√
K

L2

H
> cequil. (4.12)

Figure 7(a) presents a comparison between the theoretical late-time equilibrium
flux qequil and the numerical flux for several reservoirs having p0 = p(0, y, t)= 0.01,
H = 1, K =0.1, and decreasing lengths L = 40, L = 20, L = 10, L = 6 and L =4. The
numerical fluxes were computed in the time interval when the maximum pressure in
the reservoirs drops from 0.95 to 0.02, i.e. from the moment when the end effects
become significant until the reservoir is about 99 % depleted. Figure 7(b) presents the
results of similar calculations for reservoirs with L =40 and increasing lengths H =1,
H = 5, H = 10 and H = 20. If we denote

γ = K
L2

H
(4.13)

then for the cases considered in figure 7(a), γ has the values 160, 40, 10, 3.6, and 1.6.
It can be observed from figure 7 that when γ > cequil, i.e. when L ∈ {10, 20, 40}, the
relative difference between the theoretical flux qequil and the numerical flux qnum is less
than 2 % in most of the time interval considered, except near the beginning, where
the flux adjusts from the previous regime, and close to the end, where the numerical
solution departs from the separable prediction. This discrepancy at long time is a
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Figure 7. The ratio between the numerical flux qnum and the theoretical late equilibrium
flux qequil for two-layer bounded reservoirs with p0 = 0.01, K = 0.1, and (a) H = 1, and
L ∈ {4, 6, 10, 20, 40}, and (b) L = 40 and H ∈ {1, 5, 10, 20}.

result of the non-zero fracture pressure p0 considered in the simulation, i.e. p0 = 0.01,
which contrasts with the analytical solutions where we assume that p0 = 0. However,
even with L = 4 when γ 	 0.25cequil, the maximum difference between the two fluxes
is only about 7 % in the time interval considered. In the case of figure 7(b), γ has the
values 160, 32, 16 and 8 and the difference between qequil and qnum is again less than
2 % in most of the time interval considered.

4.2.2. No pressure equilibration between the layers

We consider now the situation when γ = KL2/H � cequil. The simplest case is
0 � K < 1. Then it follows that L � H , which means that the interface between the
layers has a much smaller area than the area of intersection between the layers and
the fracture. This may be the case in a faulted system in which gas flows through
the fault fracture from a localized block (figure 8a). Together with the fact that the
discrepancy between the permeabilities of the two layers is not very big, it follows
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Figure 8. Schematic of (a) a faulted system, (b) a localized bloc in the faulted system.

that there will be little inter-layer flow and most of the gas will flow directly into
the fracture. Therefore in this case the sum of two independent separable solutions
describes the process.

A second case is when 0 <K � 1. In this situation, it is even possible that L/H > 1
and thus the inter-layer gas flow cannot be neglected. However, as the diffusion time
along a layer scales with its permeability, it follows that the first layer will decompress
much faster than the second one. It can be then expected that an initial extraction
period when the production is driven by the depletion of the first layer will be followed
by a second stage when the gas from the second layer will flow both directly into
the fracture and also into the, now almost totally decompressed, first layer. It is thus
relevant to briefly consider the simplified problem when gas flows from a reservoir
with length L, width h and diffusion coefficient α both into the fracture and into a
very high-permeability layer beneath in which the pressure is also p0. The extraction
of gas is now expressed by the two-dimensional equation

pt − α(ppx)x − α(ppy)y = 0, (4.14)



The extraction of gas from multilayered rock 91

0.6

0.8

1.0

1.2

1.4

10–4 10–3 10–2 10–1 101100 102

1 10

L/h = 1 10

t

qnum——
q*

E

qnum——
q*

sep

Figure 9. The ratios between the numerical flux qnum and the theoretical fluxes q∗
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for several reservoirs with L/h ∈ {1, 2, 3, 4, 5, 6, 8, 10}, α = 0.1 and h = 0.1. The gas is draining
into a lateral fracture of length h and a bottom fracture of length L at pressure p0 = 0.01pmax.

where α, p are as in (2.3), and y denotes the distance normal to the interface between
the layers (figure 8b). The boundary conditions are now

p(0, y, t) = p(x, 0, t) = 0 and
∂p

∂x
(L, y, t) =

∂p

∂y
(x, h, t) = 0. (4.15)

It should be noted that in this two-dimensional nonlinear case, the governing
equation (4.14) no longer admits a complete separation of variables in the limit case
when p0 = 0. It is possible to perform a partial separation however, namely

p(x, y, t) = f ∗(t)g∗(x, y) (4.16)

and it follows that

f ∗
c∗(t) =

f ∗
c∗(0)

1 + c∗αt
, (4.17)

where c∗ depends on L and h.
Based on (4.17) we propose the following empirical formula for the separable flux

q∗
sep:

q∗
sep 	 α

(
h

L
+

L

h

)
c1

[1 + c2α(1/L2 + 1/h2)t]2
. (4.18)

An upper bound for the flux at early stages can be given by a relation similar to
(2.13):

q∗
E 	 ã(h + L)

(
α

t

)1/2

. (4.19)

Figure 9 presents a comparison between the theoretical fluxes q∗
E and q∗

sep, and the
numerical flux qnum for reservoirs having aspect ratios L/h from 1 to 10. The other
parameters of the reservoirs are p0 = 0.01, α =0.1 and h = 0.1. The coefficients c1

and c2 are here 1.12 and 1.3, respectively. Although (4.18) is not an exact relation,
the model’s predictions are within 5 % of the numerical calculations. It should be
noted that for reservoirs with very large aspect ratio, i.e. L/h � 1, the flow is
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essentially one-dimensional and the prediction of formula (4.18) should coincide with
the prediction of (2.10). Thus, for L/h � 1, the best-fit values for the coefficients c1

and c2 should converge towards af (0)2 	 1.12 and cf (0) 	 1.27, respectively. However,
for the moderate range of aspect ratios considered here, i.e. 1 � L/h � 10, the choice
c2 = 1.3 provides a better estimate of the numerical fluxes.

Let us now go back to the two-layer case. We consider a test example with
p0 = 0.01, H = 1, as in the previous examples, but now we take K =0.01 and L =2.
With these parameters we have γ = 0.04 which is about 100 times lower than the
equilibration constant cequil and therefore the equilibration between the layers should
not be achieved and, furthermore, the high-permeability layer will be almost totally
decompressed before the end effects become important in the low-permeability layer.
The numerical flux qnum obtained for this example is displayed in figure 10.

It can be seen that, as expected, at early times there are big discrepancies between
qnum and the theoretical late-time equilibrium flux qequil. During the interval 0 < tD1

(tD1 	 0.15L2 = 0.6) needed for decompression to start at the end of high-permeability
layer, the numerical flux is approximated well by the sum of the individual early
fluxes in the two layers, namely qE1 + qE2. This initial flow regime (i), is followed by
a second regime (ii) when the end effects are present in the high-permeability layer 1,
but still not in the low-permeability layer 2, i.e. for tD1 < t < 0.15 min{H 2/K, L2/K}.
In this regime, an upper bound for the flux is given by the sum of the separable
prediction for layer 1, qsep1, from equation (2.10) and the early flux q∗

E2 of layer 2,
from equation (4.19). In the final flow regime (iii), when the end effects are present in
both layers, i.e. t > 0.15 min{H 2/K, L2/K} = 60, an upper bound for the flux is given
by the sum of the separable flux of the first layer, qsep1, and the partially separable
flux from the second layer, q∗

sep2, which was calculated according to (4.18). It can be
seen from figure 10 that the numerical flux adjusts very quickly to qsep1 + q∗

sep2 for
t > 60.
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We discuss now the case when 0 � γ < cequil. This means that the pressure
equilibration between the layers still does not occur but in the same time the
high-permeability layer is no longer almost decompressed after the initial stages
of production, as in the previous case. A typical example is illustrated in figure 11,
which presents the results obtained for a reservoir with p0 = 0.01, H = 1 and K = 0.01,
as in the previous example, but now with L = 5 (γ =0.25). Figure 11(a) shows the



94 A. Farcas and A. W. Woods

pressure distribution in the reservoir at t =100, which is after the end effects have
started in both layers. It can be seen that the average pressure at the far end of the
high-permeability layer is approximately half the value of the maximum pressure in
the reservoir, and the flow is fully two-dimensional. Figure 11(b) shows the variation
of the maximum pressure in the reservoir and the variations of the pressure at four
different locations on the boundary relative to the maximum pressure. It can be
observed these pressure ratios quickly become constant after the start of the end
effects. This indicates that the solution in this case is still separable with respect
to the time variable. Finally, in figure 11(c) we have plotted the quantity 1/

√
qnum,

where qnum is the total flux into the well. As expected this quantity quickly adjusts
to a linear variation. Even without an analytical expression for the flux this property
allows the prediction of the future flow rate based on the production history in real
situations.

5. Summary
We have presented a series of models to describe the extraction of gas at constant

pressure from a stratified porous reservoir, including the end effects due to the finite
length of the reservoir. Simple scalings laws developed to determine the fluxes into the
fracture, and the length scales and time scales associated with the nonlinear diffusion
process have been validated using numerical simulations. In the first approximation,
we have considered unbounded reservoirs consisting of one or two layers of different
thickness and permeability. The one-layer case admits a simple similarity solution
which implies that the fracture flux scales as q ∼ h

√
α/t where h and α are the

thickness and the diffusivity of the layer. In the two-layer case an initial stage when
the diffusion processes in the two layers can be considered as independent of each
other is followed by a stage when the gas from the low-permeability layer short-circuits
to the fracture along the high-permeability layer. This results in an increased total
flux when compared to an independent layer situation and, allowing sufficient lateral
extent of the reservoir, then the pressure across the two layers gradually equilibrates.
Based on this we have determined a law for the late-time flux. We have also found
that the equilibration time scales with the diffusion time across the lower-permeability
layer and we have given a formula for calculating the benefit of inter-layer gas
flow.

We then investigated the end effects due to the finite length L of the reservoir,
which become important for t > tD , where tD scales with the diffusion time along the
reservoir. When a constant pressure is specified as the initial condition, the fracture flux
switches from the similarity solution to the separable solution at tD ≈ 0.15L2/α. For
the two-layer case, we have determined a law for the flux when pressure equilibration
is achieved between the layers. We have seen that this law gives a good approximation
for the late-time flux when γ (= KL2/H ) > cequil ≈ 6, i.e. when the diffusion time along
the reservoir is comparable with or larger than the diffusion time across the lower-
permeability layer. We have then discussed the situation when γ � cequil and therefore
there is no pressure equilibration between the layers. We have shown that the case
0 < K � 1 can be approximated to a problem of gas flowing from the lower-
permeability layer both into the fracture and into the higher-permeability layer which
is assimilated into a fracture. This problem admits a partially separable solution and
we have shown on a numerical example that after the end effects become important,
the total flux adjusts very quickly to the sum of the separable flux of the high-
permeability layer and the partially separable flux from the low-permeability layer.
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